STEPS FOR FACTORING (no matter what kind of polynomial it is.)

Step 1:	Factor out the GCF, if there is one.
Step 2:	Count the number of terms.
Step 3:	A) 2 terms - Is it a difference of squares? - Is it a difference of two cubes? - Is it a sum of two cubes? $\begin{aligned} & A^{2}-B^{2}=(A+B)(A-B) \\ & A^{3}-B^{3}=(A-B)\left(A^{2}+A B+B^{2}\right) \\ & A^{3}+B^{3}=(A+B)\left(A^{2}-A B+B^{2}\right) \end{aligned}$ B) 3 terms - Is it a perfect square trinomial? $\begin{gathered} A^{2}+2 A B+B^{2}=(A+B)^{2} \\ A^{2}-2 A B+B^{2}=(A-B)^{2} \end{gathered}$ - Is the coefficient of the x^{2} term 1 ? $\begin{gathered} x^{2}+b x+c=(x+m)(x+n) \\ \text { where } m \cdot n=c, m+n=b \end{gathered}$ - Is the coefficient of the x^{2} term different than a 1 ? $>$ Then use factoring by grouping. $>$ Or use the "Box" method. C) 4 terms - Use factoring by grouping \& GCF 3 times. (Remember: sometimes we can "group" into groups other than pairs, such as perfect square trinomials.)
Step 4:	CHECK YOUR WORK!

